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� We use machine-learning to classify EEG during motor imagery in samples of athletes, musicians, and
age-matched controls.

� Imagery of complex actions and imagery of familiar actions can result in more robust brain responses
in some cases.

� Our findings may be applied to improve brain-computer interfaces intended for use by behaviourally
non-responsive patients.

a b s t r a c t

Objective: We sought to determine whether the sensorimotor rhythms (SMR) elicited during motor imag-
ery (MI) of complex and familiar actions could be more reliably detected with electroencephalography
(EEG), and subsequently classified on a single-trial basis, than those elicited during relatively simpler
imagined actions.
Methods: Groups of healthy volunteers, including experienced pianists and ice hockey players, performed
MI of varying complexity and familiarity. Their electroencephalograms were recorded and compared
using brain-computer interface (BCI) approaches and spectral analyses.
Results: Relative to simple MI, significantly more participants produced classifiable SMR for complex MI.
During MI of performance of a complex musical piece, the EEG of the experienced pianists was classified
significantly more accurately than during MI of performance of a simpler musical piece. The accuracy of
EEG classification was also significantly more sustained during complex MI.
Conclusion: MI of complex actions results in EEG responses that are more reliably classified for more indi-
viduals than MI of relatively simpler actions, and familiarity with actions enhances these responses in
some cases.
Significance: The accuracy of SMR-based BCIs in non-communicative patients may be improved by
employing familiar and complex actions. Increased sensitivity to MI may also improve diagnostic accu-
racy for severely brain-injured patients in a vegetative state.
� 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Patients with disorders of consciousness (DOC) are behaviour-
ally characterized by varying levels of arousal and awareness mea-
sured primarily by their ability to exhibit reliable responses to
external stimulation (Jennett, 2002; Bernat, 2006; Owen, 2008). Of
the various conditions included in the DOC (e.g., coma, the mini-
mally conscious state (MCS), etc.), the vegetative state (VS) is one
of the most poorly understood (Jennett, 2002; Owen, 2008). After
emerging from coma, VS patients retain cycles of eye opening and
closing similar to the sleep-wake cycles of fully awake and aware
individuals (Multi-Society Task Force on PVS, 1994a,b; Royal
College of Physicians Working Group, 1996; cf. Cruse et al., 2013).
Critically, despite producing spontaneous movements, VS patients
are unable to exhibit any purposeful outward responses to verbal
commands, and are thereby diagnosed as ‘unaware’ (Jennett,
2002; Owen, 2008). Many VS patients have diffuse brain injury that
may include insult to the peripheral motor system; these circum-
stances could lead to an inaccurate diagnosis of VS in a patient
who retains awareness and cognitive function, but lacks the ability
to respond purposefully in a behavioural assessment (Owen, 2008).
ctroen-
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In fact, researchers have reported that some patients who are diag-
nosed as VS can follow (e.g., Owen et al., 2006; Monti et al., 2010;
Bardin et al., 2011; Cruse et al., 2011; Goldfine et al., 2011; Naci
and Owen, 2013), or attempt to follow (e.g., Bekinschtein et al.,
2011; Cruse et al., 2012), commands by modulating their brain
activity, despite being unable to follow commands with their exter-
nal behaviour. These findings raise the possibility that assistive de-
vices known as brain-computer interfaces (BCIs) could improve
diagnostic accuracy in this group by detecting ‘covert’ signs of
awareness, as well as by potentially offering the patient a means
of communication (e.g., Monti et al., 2010; Lulé et al., 2013).

BCIs are devices that can allow a person (the ‘user’) to operate a
computer without producing a motor output. Using machine-learn-
ing techniques, subject-specific patterns of brain activity can be
learned by a computer and subsequently classified into a predefined
communicative output. For example, the computer may output the
response ‘‘yes’’ when the user produces brain activity pattern A, and
output the response ‘‘no’’ when the user produces brain activity pat-
tern B (e.g., Mason and Birch, 2003; Sorger et al., 2009; Lulé et al.,
2013; Naci et al., 2013). The computer algorithm must be trained
on a series of trials in which the desired output from the user is
known (the ‘training phase’ of machine-learning classification),
and then tested on trials in which the desired output from the user
is not known (the ‘testing phase’ of machine-learning classification)
based on predefined features of the data (e.g., power in a given fre-
quency band of the electroencephalogram, EEG). From the testing
phase of classification, one can obtain an accuracy value based on
the number of successfully identified brain responses and, by exten-
sion, correctly executed communicative outputs from the BCI. Cru-
cially, from a clinical perspective, when classification accuracy is
significantly above chance, the individual is demonstrably capable
of producing consistent and appropriate patterns of brain activity
in response to commands, thus providing a means to identify covert
command-following in the absence of a behavioural response (Cruse
et al., 2011; Owen, 2013). Since classification must be both accurate
and reliable for successful communication and other BCI output
functions, such as computer mouse cursor control, classification
accuracy and task sensitivity are two of the most important mea-
surements of any BCI.

A particular EEG signal called the sensorimotor-rhythm (SMR) is
a practical option for BCIs intended for use by VS patients (Chatelle
et al., 2012; Naci et al., 2012; Grosse-Wentrup and Schölkopf, 2013).
Using as few as four surface electrodes placed on the head over the
sensorimotor cortical areas (sites CP3, CP4, FC3, and FC4 from the
modified international 10–20 system; Sharbrough et al., 1991),
one can acquire the SMR as a person kinesthetically imagines
moving a body part. Power decreases known as event-related
desynchronizations (ERDs) and power increases known as event-
related synchronizations (ERSs) in the mu (7–13 Hz) and beta
(13–30 Hz) frequency bands are typically used as the signal features
for classification with SMR-based BCIs (Pfurtscheller and Neuper,
1997; Neuper and Pfurtscheller, 2001; Neuper et al., 2009). Unlike
other EEG-based BCI paradigms (e.g., the P300 speller described in
Farwell and Donchin (1988)), the imagination tasks used with
SMR-based BCIs impose low sensory demands on the user. Further-
more, of particular importance for patients diagnosed as VS who, by
definition, are unable to fixate their eyes, SMR BCIs need not involve
visual stimulation (Chatelle et al., 2012; Naci et al., 2012; Grosse-
Wentrup and Schölkopf, 2013). Finally, it is important to acknowl-
edge that changes in the cortical motor system following prolonged
immobility may prevent some behaviourally non-responsive
patients from producing reliable SMRs. Nevertheless, there is
evidence that individuals diagnosed with disorders of conscious-
ness, including VS and MCS, can produce SMRs in motor tasks, even
after several years of immobility (Goldfine et al., 2011; Cruse et al.,
2011). Furthermore, patients with chronic and extensive motor
Please cite this article in press as: Gibson RM et al. Complexity and familiarity
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impairments, including tetraplegia and advanced amyotrophic lat-
eral sclerosis (ALS), have been successfully trained to control
SMR-based BCIs (Pfurtscheller et al., 2000; Kübler et al., 2005).
The SMR approach to BCI is therefore a viable option for patients
who have been immobile for an extended period, including those
with a disorder of consciousness.

Despite the potential benefits of bedside EEG-based BCIs for pa-
tients diagnosed as VS and their families, there is substantial intra-
and inter-subject variability in BCI performance (Wolpaw et al.,
2002; Pfurtscheller et al., 2006; Naci et al., 2012; Grosse-Wentrup
and Schölkopf, 2013). In many studies of healthy volunteers and
people with severe motor impairments, some individuals are sim-
ply unable to reliably regulate the brain signals necessary to oper-
ate a BCI without training (e.g., Guger et al., 2003; Wolpaw and
McFarland, 2004; Cruse et al., 2011; Hammer et al., 2012). In the
current work, we propose modifications to the traditional SMR-
based BCI design that may optimize BCI performance for behavio-
urally non-responsive patients in particular. These modifications
apply to the nature of the task used to generate the SMR and the
nature of the comparisons made during signal classification (see
also Curran and Stokes, 2003; Curran et al., 2004).

In published SMR-based BCI research to date, users are typically
instructed to imagine moving their hands, feet, or tongue to gener-
ate an SMR (e.g., Neuper and Pfurtscheller, 2001; Kübler et al.,
2005; Cruse et al., 2011). With only a few exceptions, users are
asked to imagine very simple actions, such as repeatedly squeezing
one of their hands into a fist. However, actions that are more com-
plex could result in a more robust and consistent SMR (Curran and
Stokes, 2003; Curran et al., 2004). Indeed, there is evidence that
complex imagined actions are associated with more robust brain
responses than simpler imagined actions. For instance, there is
converging evidence from functional magnetic resonance imaging
(fMRI), functional near-infrared spectroscopy (fNIRS), and trans-
cranial magnetic stimulation (TMS) studies that complex motor
imagery is associated with greater hemodynamic change and high-
er amplitude motor-evoked potentials than simple motor imagery
(e.g., Kuhtz-Buschbeck et al., 2003; Roosink and Zijdewind, 2010;
Holper and Wolf, 2011). Similar to previous work, we define
‘complex’ motor imagery in this paper as tasks that involve both
sequences of movements and more than one body part
(e.g., Kuhtz-Buschbeck et al., 2003; Roosink and Zijdewind, 2010;
Holper and Wolf, 2011). We must also clarify that our complexity
manipulations in this work always involve ‘‘common’’ complex ac-
tion sequences; that is, we chose actions that participants would
have previously encountered through overt practice (e.g., Studies
2 and 3) or common knowledge (e.g., clapping as in Study 1). We
selected common action sequences to ensure that participants
could draw from procedural memory or semantic knowledge in or-
der to imagine each action. These sorts of known complex actions
would therefore have lower cognitive demands than novel, com-
plex action sequences that would need to be learned at the time
of assessment (e.g., tapping the fingers in a random sequence de-
fined by the experimenter as in previous work; Kuhtz-Buschbeck
et al., 2003; Roosink and Zijdewind, 2010; Holper and Wolf,
2011). We hypothesized that more complex actions would result
in more robust SMRs and, consequently, higher classification accu-
racy than traditional SMR-based BCI imagery tasks.

Additionally, it has been proposed in previous work that asking
users to imagine actions which they are familiar with could improve
SMR classification (Curran and Stokes, 2003; Curran et al., 2004). In
this paper, we chose to explore the role of action familiarity in mod-
ulation of the SMR by drawing from samples of experienced athletes
and musicians, given that the effects of long-term motor learning
have been studied extensively in these groups already (see Münte
et al. (2002), and Nakata et al. (2010), for reviews). While imagining
actions involving the sport or instrument of their expertise,
enhance single-trial detectability of imagined movements with electroen-
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experienced athletes and musicians produce more focused patterns
of brain activation (e.g., Lotze et al., 2003; Milton et al., 2007; Olsson
et al., 2008; Wei and Luo, 2010) and report more objectively accurate
imagery than novices (e.g., Louis et al. (2012); see also Rieger (2012)).
Based on the latter findings, it was expected that familiar imagery
would result in a more reliable SMR, and thus higher classification
accuracy, than traditional SMR-based BCI imagery. If supported, this
hypothesis could be extended to future work with brain-injured pa-
tients by selecting imagery tasks based on the skills and hobbies that
the patient had prior to their injury. Furthermore, based on the find-
ings reviewed previously regarding the influence of action complex-
ity on brain responses to motor imagery, it was also hypothesized
that actions that were both familiar and complex would further en-
hance the SMR and increase classification accuracy – thereby
improving the ability to detect covert awareness in future work with
behaviourally non-responsive patients.

Another convention in SMR-based BCI research to date is that
comparisons are almost exclusively made between the SMRs gen-
erated for various imagined movements (e.g., left hand versus right
hand, etc.; Neuper and Pfurtscheller, 2001; Guger et al., 2003;
Kübler et al., 2005; Pfurtscheller et al., 2006; Cruse et al., 2011).
Although these types of comparisons render acceptable classifica-
tion accuracy in most healthy people (e.g., Guger et al., 2003; Bai
et al., 2008), as discussed in Cruse et al. (2012), these types of com-
parisons may not be appropriate for VS patients. Indeed, as part of
the standard behavioural assessment tool for VS patients, the Coma
Recovery Scale-Revised (CRS-R; Kalmar and Giacino, 2005), aware-
ness is assessed by a patient’s ability to produce one type of action
following a command. If, on three out of four occasions, the patient
is able to successfully follow that command, the patient is diag-
nosed as, at least, minimally conscious (Kalmar and Giacino,
2005; see also Cruse et al., 2012). In this work, we therefore per-
formed comparisons that are more similar to behavioural assess-
ments of awareness than previous SMR-based BCI paradigms.
Specifically, contrasts were made between one imagined action
of interest and periods of rest (mind-wandering), rather than be-
tween two distinct imagined actions. In addition to providing a po-
tential BCI-based assessment of awareness that is more similar to
the standard behavioural method than previous BCIs, we propose
that this technique is more practical for behaviourally non-respon-
sive patients because maintaining more than one imagined action
in working memory may impose excessive cognitive demands on
some patients.

As a final consideration, it is important to note that behavioural
assessments of awareness such as the CRS-R (Kalmar and Giacino,
2005) are based on the reliability of a patient’s ability to follow com-
mands. Patients are evaluated across multiple assessment sessions
and multiple attempts to follow the same command in each session
in order to ensure that an accurate assessment of awareness is ob-
tained. If neuroimaging-based methods are to be used in clinical
assessments of awareness, these methods should maximize the
likelihood of detecting a reliable command-following response to
reduce the risk of misdiagnosing awareness. SMR-based BCIs natu-
rally provide an additional measure of reliability that is not auto-
matically available with standard behavioural assessments, i.e.,
the statistical significance of the classification of the brain response.
As described above, when two brain states produced by a patient
can be differentiated with statistical significance, it may be inferred
that the patient possesses a covert ability to follow commands.
Thus, increasing the accuracy of BCI classification not only increases
the accuracy of potential communication devices, but also increases
the number of patients in whom covert command-following may
be detected when it is present.

The research question in this work was whether having users
perform motor imagery tasks involving more complex and
familiar movements than previous investigations would improve
Please cite this article in press as: Gibson RM et al. Complexity and familiarity
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classification accuracy and result in more users (and, in future
work, patients diagnosed as VS) with SMRs that could be detected
reliably. This question was addressed in three studies of healthy,
young adults with an experimental set-up suitable for future
clinical work with VS and other non-communicative patients. In
Study 1 (Complexity), participants imagined simple hand actions
(squeezes) of the sort typically used with SMR-based BCIs along-
side other more complex bimanual actions not commonly used
with BCIs. It was predicted that, in accordance with prior evidence
of increased brain activity during complex motor imagery (Kuhtz-
Buschbeck et al., 2003; Roosink and Zijdewind, 2010; Holper and
Wolf, 2011), classification accuracy (versus rest) would be higher
when the participant was imagining complex actions than when
imagining relatively simpler actions. In Study 2 (Familiarity),
groups of experienced pianists, experienced ice hockey players,
and age-matched controls were instructed to imagine completing
hand squeezes and actions from hockey and piano. It was predicted
that classification accuracy between rest and imagery would be
highest for the athletes and musicians in the action with which
they were most familiar (i.e., pianists imagining playing the piano,
and hockey players imagining playing hockey; see Lotze et al.,
2003; Fourkas et al., 2008; Olsson et al., 2008; Wei and Luo,
2010). In Study 3 (Complexity and Familiarity), the experienced
pianists from Study 2 imagined playing one simple piece of music
and one relatively more complex piece of music on the piano. It
was expected that classification accuracy would be highest for
the complex piece versus rest comparison. Implications and mod-
ifications for future BCI work with VS patients are discussed.
2. Methods

2.1. Ethics statement

All participants gave informed written consent. The Psychology
Research Ethics Board of Western University (London, ON, CAN)
provided ethical approval for the studies.

2.2. Participants and stimuli

2.2.1. Study 1 (Complexity)
Sixteen healthy, right-handed young adults participated in the

complexity study (five men; age range = 17–20 years; median age
of 18 years). For the simple imagined movement phase of the com-
plexity study (Study 1), the participants were instructed to imagine
repeatedly squeezing their left hand, right hand, or both hands fol-
lowing the auditory cues of ‘‘left’’, ‘‘right’’, and ‘‘both’’, respectively.
For the complex imagined movements phase of Study 1, the partic-
ipants were instructed to imagine either playing the guitar, clap-
ping their hands, or juggling using both hands. These tasks were
cued with the words ‘‘guitar’’, ‘‘clap’’, and ‘‘juggle’’, respectively.
In each task phase, participants were also asked to cease the previ-
ously-cued mental imagery and mind-wander following the cue
‘‘relax’’. The order of the simple and complex imagined movement
phases were counter-balanced across participants. All auditory
instruction stimuli were 1 s in length.

2.2.2. Study 2 (Familiarity)
Forty-eight healthy, right-handed young adults participated in

the familiarity study. Sixteen participants were experienced ice
hockey players (seven men; age range = 18–29 years; median age
of 20 years); sixteen participants were experienced pianists (six
men; age range = 18–29 years; median age of 20 years); and six-
teen participants had either limited or no experience playing the
piano or hockey (eight men; age range = 18–28 years; median
age of 18 years). All hockey players had played regular, competitive
enhance single-trial detectability of imagined movements with electroen-
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ice hockey for at least 10 years, and all pianists had formal musical
training and had played and practiced piano regularly for at least
10 years. There were no significant differences in mean age of first
play experience, mean years of total play experience, or mean
self-reported hours of regular play per week between the groups
of athletes and musicians, pairwise ps > .51 (Bonferroni correction;
see Table 1). As shown in Table 1, the three groups also did not
differ significantly in mean age, sex, handedness (Oldfield, 1971),
or imagery ability (Gregg et al., 2010; ps > .34). All participants
were instructed to imagine making a slap shot (a bimanual action
from hockey), playing a musical piece on the piano using both
hands, or squeezing their right hand into a fist following the audi-
tory cues of ‘‘hockey’’, ‘‘piano’’, and ‘‘right hand’’, respectively. As in
Study 1, participants were asked to mind-wander following the cue
‘‘relax’’, and all instructions were 1 s in length.

2.2.3. Study 3 (Complexity and Familiarity)
The experienced pianists (n = 16) from Study 2 completed Study

3 in the same EEG recording session. In Study 3, the pianists were
instructed to imagine playing ascending and descending C-major
scales and B-major arpeggios over two octaves using both hands
following the auditory cues of ‘‘scale’’ and ‘‘arpeggio’’. The pieces
of music were selected based on the curriculum of the Royal Con-
servatory of Music (RCM), which is a prominent music education
institution in Canada. In the RCM curriculum, piano students are
evaluated on scales and the key of C-major from the 1st grade level,
arpeggios from the 4th grade level, and the key of B-major from the
7th grade level (Royal Conservatory of Music, 2008). Given the dif-
ferent grade levels at which the C-major scale and B-major arpeg-
gio are evaluated in the RCM curriculum, one can conclude that the
B-major arpeggio represents a more difficult, i.e., complex, action
than the C-major scale. It is also important to note that all the pia-
nists in this study reported high familiarity with both pieces and
Table 1
Summary of participant demographics and experience measures from Studies 2 and 3.

Variable Pianists
M ± SD

Demographics
n 16
Sex (# male) 6
Age (years) 20.6 ± 2.9
LQ 70.9 ± 14.7

Hockey experiencea

Initial age (years) 1.6 ± 3.0
Total years 0.9 ± 1.8
Hours per week 0.5 ± 2.0
Number of other sports played 1.5 ± 1.2

Piano experienceb

Initial age (years) 5.4 ± 2.0�,b

Total years 14.8 ± 3.6⁄⁄⁄

Hours per week 8.9 ± 3.8⁄⁄⁄

Number of other instruments played 1.6 ± 1.0⁄⁄⁄

MIQ-RS Scores
Kinesthetic 5.2 ± 1.0
Visual 5.8 ± 1.0

Self-report ratings of imagery
Vividnessc 3.9 ± 1.0d

4.2±1.1e

Note: ⁄⁄⁄p < .001; ⁄p < .05; �p < .1. M = mean; SD = standard deviation; LQ = laterality q
questionnaire-revised second version (Gregg et al., 2010).

a Four pianists reported some leisure experience playing hockey (2–5 years total exp
playing hockey (1–3 years total experience initiated at ages 5–13).

b Three hockey players reported some leisure experience playing piano (1–4 years
experience playing piano (0.5–5 years total experience initiated at ages 5–22).

c Responses to the following question: ‘‘Please rate the overall vividness of your im
3 = somewhat vivid, 4 = moderately vivid, 5 = very vivid’’.

d Responses from the pianists for the Study 2 imagery.
e Responses from the pianists for the Study 3 imagery.
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were able to recall both pieces from memory. Finally, the pianists
were also instructed to mind-wander following the auditory cue
of ‘‘relax’’, and all instructions in Study 3 were 1 s in length. The
Study 3 procedure was always conducted following the Study 2
procedure in order to prevent pianists from selecting the particular
musical pieces from Study 3 for the piano action in Study 2.

2.3. Procedure

Before the EEG recording session, each participant completed a
series of short questionnaires. All participants completed the Edin-
burgh Handedness Inventory (Oldfield, 1971) and the Movement
Imagery Questionnaire-Revised Second Version (Gregg et al.,
2010). Participants in Studies 2 and 3 also completed a question-
naire regarding their experiences playing hockey, piano, and other
sports and instruments. At the conclusion of Studies 2 and 3, par-
ticipants rated the vividness of their imagined actions using a 5-
point Likert scale (see Table 1).

All auditory cues were pre-recorded by one female speaker and
presented to the participant using ER-1 insert earphones (Etymōtic
Research Inc., Elk Grove Village, IL). Each trial began with an audi-
tory cue and was followed by 5–8 s of silence before the onset of
the next auditory cue. The duration of the silent interval was se-
lected randomly from a uniform distribution on each trial. Studies
1 and 2 were completed in four blocks of 48 trials (12 trials of each
instruction per block); Study 3 was completed in three blocks of 48
trials (16 trials of each instruction per block) as there were only
three (rather than four) trial types in the latter task; and each block
of 48 trials was approximately 6 min in duration. All trials were
presented in a pseudorandom order so that no more than two cues
of the same type were presented consecutively, and the first trial of
each block was always an imagined action trial (rather than a ‘re-
lax’ trial). Participants were provided with short breaks between
Hockey players Controls Total
M ± SD M ± SD M ± SD

16 16 48
7 8 21
20.9 ± 3.4 19.4 ± 2.7 20.3 ± 3.0
70.9 ± 21.9 67.8 ± 20.7 69.9 ± 19.0

5.0 ± 1.7⁄,a 2.6 ± 4.2 3.1 ± 3.4
15.4 ± 3.4⁄⁄⁄ 0.4 ± 0.9 5.6 ± 7.4

9.2 ± 4.5⁄⁄⁄ 0.8 ± 2.0 3.5 ± 5.1
2.9 ± 1.5⁄ 2.4 ± 1.6 2.3 ± 1.5

1.6 ± 3.4 3.7 ± 6.7 3.6 ± 4.7
0.5 ± 1.2 0.6 ± 1.4 5.3 ± 7.1
0.3 ± 0.7 0.6 ± 1.3 3.2 ± 4.7
0.3 ± 0.5 0.7 ± 0.6 0.9 ± 0.9

5.1 ± 1.1 4.8 ± 1.3 5.0 ± 1.1
5.6 ± 1.4 5.4 ± 1.0 5.6 ± 1.1

3.7 ± 0.6 3.8 ± 0.7 3.8 ± 0.8

uotient handedness measure (Oldfield, 1971); MIQ-RS = Movement imagination

erience initiated at ages 5–8), and four controls reported some leisure experience

total experience initiated at ages 7–10), and five controls reported some leisure

agined actions during the task, such that: 1 = not at all vivid, 2 = slightly vivid,

enhance single-trial detectability of imagined movements with electroen-
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blocks in order to reduce fatigue. Participants were also instructed
to imagine completing each action repeatedly from the offset of the
auditory cue to the onset of the next auditory cue in order to
account for potential differences in the duration of the imagined
actions. To reduce ocular artefacts, participants were instructed
to keep their eyes closed throughout the tasks.

2.4. Electrophysiological data acquisition and pre-processing

In all three studies, EEG was recorded using the g.Gamma active
electrode system (g.tec Medical Engineering GmbH, Austria). In
Study 1, EEG was recorded with a four-channel montage housed
in an electrode cap; the electrodes were placed at sites CP3, FC3,
CP4, and FC4 (Sharbrough et al., 1991). In Studies 2 and 3, EEG
was recorded from the same four scalp sites as in Study 1, and
additional electrodes were placed at sites TP7, FT7, CPz, FCz, TP8,
and FT8 (Sharbrough et al., 1991). The reported analyses for Stud-
ies 2 and 3 consist of data from only the four electrodes used in
Study 1, as this montage has been previously shown to provide ro-
bust SMR recordings (Guger et al., 2003; Cruse et al., 2012). The
EEG signals were acquired using a g.USBamp amplifier operating
through a USB 2.0 port. Stimuli presentation and physiological data
recordings were performed using a Simulink� model in MATLAB�

(The Mathworks, Inc., Natick, MA). Simulink is often utilized in
BCI applications because it ensures the precise synchronization of
EEG activity and cue onset/offset (Guger et al., 2001). In all three
studies, bipolar surface electromyographic (EMG) recordings were
obtained from both forearms on the ventral surface (placed over
the flexor digitorum profundus) in order to detect overt movements.
Following previous research regarding BCIs (e.g., Guger et al., 2003;
Kübler et al., 2005; Pfurtscheller et al., 2006), we did not acquire
electrooculograms to measure eye movements during the record-
ing. Online, the EEG data were filtered from 0.5 to 60 Hz with a
60 Hz notch filter using an infinite impulse response (IIR) digital
Butterworth filter set using the g.USBamp graphical user interface
(GUI). The EMG data were filtered from 5 to 250 Hz with a 60 Hz
notch filter using the g.USBamp GUI. The EEG recordings were ref-
erenced to the right earlobe with a forehead (Fpz) ground, and the
right elbow (olecranon) was used for the EMG ground. The EMG
and EEG data were sampled at 600 Hz with impedances kept below
5 kX for the EEG recording.

Offline, the EEG data were down-sampled to 100 Hz, filtered be-
tween 0.5 and 40 Hz using the EEGLAB function ‘pop_eegfilt’, and
segmented into 6-s epochs time-locked to the onset of the auditory
cue. The EEGLAB filter function consisted of a two-step least-
squares finite impulse response (FIR) filter; in the first step, data
were filtered with a high-pass cut-off of 0.5 Hz, and in the second
step, data were filtered with a low-pass cut-off of 40 Hz. The EMG
data were rectified and then filtered with a 10 Hz high pass filter
using the same EEGLAB least-squares FIR filter function described
previously. Trials containing physiological artefacts, including
overt hand movements as evident from the EMG, were identified
by visual inspection and removed. After artefact rejection, the
median number of trials included in each imagery and rest condi-
tion per participant was: Study 1–40 (range: 29–48); Study 2–43
(range: 27–48); and Study 3–43 (range: 28–48). Finally, the EEG
data were re-referenced offline to form two bipolar channels
(FC3–CP3, FC4–CP4) that are subsequently identified as C30 and
C40, respectively; this bipolar approach is known to detect changes
in mu and beta power with high accuracy across many people
(Cruse et al., 2012).

2.5. EEG single-trial classification procedure

A machine-learning algorithm was used for single-trial classifi-
cation of the EEG data as described in Cruse et al. (2011, 2012). For
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these analyses, the log bandpower values of four frequency bands
at electrodes C30 and C40 were the classification features. Based on
previous work (Cruse et al., 2011, 2012), the frequency bands were
7–13 Hz (mu), 13–19 Hz (low-beta), 19–25 Hz (mid-beta), and 25–
30 Hz (high-beta), for a total of eight features per classification
analysis (two electrodes � four frequency bands). For the single-
trial analyses, the spectral power in each band was estimated with
a sliding Hamming window (1-s; as recommended by Pfurtscheller
and Lopes da Silva, 1999) moving in 50 ms steps using a short-time
Fourier transform (MATLAB function ‘spectrogram’).

Classification of each imagined action (e.g., squeezing the right
hand in Study 1, etc.) and the corresponding rest condition was
performed using a naïve Bayes classifier (MATLAB’s ‘naivebayes’
object). Each classification analysis was conducted using ten-fold
cross-validation. For the cross-validation procedure, each partici-
pant’s trials for one type of imagined action and the rest condition
from the same experiment were separated into ten approximately
equal groups. The naïve Bayes classifier was trained on the features
of nine of these groups (‘training’), and then the class of each trial
in the tenth group was predicted in order to calculate the classi-
fier’s accuracy (‘testing’). Specifically, during training, the naïve
Bayes classifier estimated the parameters of a probability distribu-
tion per training feature per class; the parameters were the mean
and standard deviation of a normal distribution, the training fea-
tures were bandpower per frequency band at each electrode, and
the two classes were the rest and imagery trial types. Using Bayes’
Theorem during testing, the features of the test trials were used to
calculate the posterior probabilities for each class, and then each
test trial was placed in the class with the highest posterior proba-
bility (for more information regarding naïve Bayes classification,
see Jiang et al., 2007). The classification procedure was repeated
ten times so that each trial served as a test trial in exactly one of
the ten cross-validation folds. The average classification accuracy
across the ten folds was then calculated at each time-point, and
the time-course of the cross-validated classification accuracy was
smoothed with a sliding-window of 500 ms to control for outliers
(cf. Cruse et al., 2012).

To determine the statistical significance of the classification
accuracy, a permutation test with 1000 repetitions that controlled
for familywise error was used (Maris, 2004; see also Cruse et al.,
2012). For each permutation, the class labels of imagery or rest
were randomly shuffled across trials, and the cross-validated clas-
sification procedure described previously was repeated. The maxi-
mum smoothed accuracies across all time-points from each of the
1000 repetitions were used to form a distribution representing the
expected classification results if the classifier were operating at
chance (the null hypothesis). The classification accuracy obtained
for the participant’s original data (i.e., the data with the correct trial
labels) was then evaluated against this distribution to calculate a
familywise error-corrected significance value for the original clas-
sification results at each time-point. Finally, to control for the mul-
tiple comparisons of bandpower (i.e., one comparison for each time
point of imagery versus rest), a control of False Discovery Rate
(FDR) approach was used (implemented via MATLAB’s ‘fdr’ func-
tion; Benjamini and Hochberg, 1995; Verhoeven et al., 2005). The
control of FDR approach is known to reduce the risk of Type I error
without requiring as stringent reductions in power as Bonferroni
procedures (see Verhoeven et al. (2005)).

2.6. EEG spectral analyses

In addition to the single-trial classification analyses of the data,
the EEG data from all three studies were analyzed using the same
spectral analysis procedure reported in Cruse et al. (2012). For each
time-point at C30 and C40, spectral power estimates were calculated
using a Hanning window (1-s) time–frequency transformation via
enhance single-trial detectability of imagined movements with electroen-
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the ‘ft_freqstatistics’ function of the open-source MATLAB toolbox,
FieldTrip (Oostenveld et al., 2011). The time–frequency data at
both electrodes were then compared between the imagined move-
ments and rest using cluster-based permutation testing (cf. Maris
and Oostenveld, 2007; Cruse et al., 2012) implemented via Field-
Trip. For the cluster-based testing, the time–frequency data for a
given imagery condition and rest (or another imagery condition;
see Section 2.7 for a description of the comparisons for each study)
were log-transformed and then compared at each data point by a
paired-samples t-test. All significant data points (p < .025) were
then arranged into groups, i.e., clusters, based on their temporal
and spectral proximity to each other, and the sum of the t values
was calculated for each cluster. To determine the familywise er-
ror-corrected significance value for each summed t-value cluster,
a Monte Carlo randomization test that controlled for familywise
error was used. In the randomization test, the condition labels
were randomly permuted to remove task-related differences, and
the clustering procedure was repeated 1000 times. The maximum
summed t-value clusters from each repetition were used to form a
distribution, and this distribution was then used to test the null
hypothesis that the original summed t-value cluster (i.e., the
summed t-value cluster computed from the data with the correct
trial labels) occurred by chance.

2.7. Group-level statistical analyses

For the single-trial analyses of the EEG data (see Table 2, Fig. 1,
and Supplementary Tables S1–S3), all group-level statistical analy-
ses were conducted using IBM SPSS Statistics version 21.0, and
where applicable, the Dunn–Sidak correction was used for the fol-
low-up tests. For the spectral analyses of the EEG data (see Figs. 2–
4), all statistical analyses were conducted using the cluster-based
permutation testing described previously (cf. Maris and Oosten-
veld, 2007; Cruse et al., 2012) via custom MATLAB script using
the open-source toolbox, FieldTrip (Oostenveld et al., 2011).

For the group comparisons of single-trial analyses of the Study 1
and Study 3 data, several parametric and non-parametric repeated-
measures statistical tests were used. Two paired-samples t-tests
were used to compare maximum classification accuracy and the
time at which maximum classification accuracy occurred relative
to the onset of the instruction in both Studies 1 and 3. Wilcoxon
Signed Rank Tests were used to compare the number of time-
points for which a significant classification was obtained in both
studies, and this test was also used to compare the self-reported
vividness ratings of the imagined actions from the pianists be-
tween Study 2 and Study 3. An exact (rather than asymptotic) cal-
culation of the p-value was used with the test of time-points in
Study 1 to account for the positive skew of the count data (given
that many participants had zero significant time-points, especially
in the simple complexity condition). Finally, the number of trials
included in each complexity condition of each study was compared
using the Friedman test.

To further illustrate the difference in terms of the significance of
the single-trial analyses between the complexity levels in Studies 1
and 3, participants were assigned to a binary category based on
whether or not at least one imagined movement in each complex-
ity condition was classified significantly from rest for the partici-
pant (0 = no significant classifications). The number of
participants with at least one significant classification and the
number of participants with no significant classifications in each
complexity level were then compared using Fisher’s Exact Test.

For Study 2, 3 (Group: Pianist, Hockey, Control) � 3 (Action:
Play Piano, Slap-shot, Squeeze) mixed analyses of variance (ANO-
VAs) were used to compare the averaged maximum classification
accuracies, the time at which the maximum accuracy occurred,
and the total number of trials included in each condition (N.B.,
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the trial numbers were rank-transformed to meet the statistical
assumptions of the ANOVA). Additionally, a Kruskal–Wallis test
was performed to compare the self-reported imagery vividness rat-
ings between the groups. Given the lack of significant differences
in classification accuracy in Study 2, no comparisons were made
for the number of significant time points in the imagery versus rest
comparisons.

The group spectral analyses were conducted with the time–fre-
quency data averaged across all trials in each condition per partic-
ipant. For Study 1, the time–frequency data for each participant
were averaged across all of the imagined actions in each complex-
ity level, and the cluster-based permutation testing was conducted
between each complexity level and rest, and between the two
complexity levels (Fig. 2). For Study 2, comparisons were made
separately for each familiarity group between each imagery condi-
tion and rest (Fig. 3). Finally, for Study 3, comparisons were made
between each of the two imagery conditions and rest, and between
the two imagery conditions (Fig. 4). Although we were primarily
concerned with the imagery versus rest comparisons because we
posit that these comparisons are more practical for future BCI work
with brain-injured patients, we conducted post hoc comparisons
between the imagery conditions in the spectral analyses of the
Studies 1 and 3 data to attempt to identify the neurophysiological
correlates of the complexity effect observed in the single-trial anal-
yses of Study 3. We did not make comparisons between the famil-
iar and control imagery conditions in Study 2 because there was no
evidence of an effect of action familiarity in the single-trial
analyses.
3. Results

3.1. Study 1 (Complexity)

In terms of the single-trial analyses of the EEG data, there was a
trend for classification accuracy (imagery versus rest) to be higher
for the complex imagined actions, t(15) = �1.963, p = .068, d = 0.49
(Simple: M = 60.68%, SE = 0.74%; Complex: M = 62.74%, SE = 0.93%).
There was no significant difference for the time at which the max-
imum classification accuracy occurred between the two complex-
ity conditions, p = 0.29. From the familywise permutation tests,
there were significantly more time-points at which significant clas-
sifications were obtained in the complex condition than in the sim-
ple condition, Z = �2.197, exact p = .026, r = .55 (Simple: median of
0 significant time-points [range: 0–26]; Complex: median of 14.5
significant time-points [range: 0–31]). It is also worth noting that
there was no significant difference in the number of trials in each
complexity level, p = .29.

There was some variability between and within subjects for the
single-trial analyses of the Study 1 EEG data. While at least one
simple imagined action type was classified significantly from rest
for only four of the 16 participants (25%), at least one complex
imagined action type was classified significantly from rest for sig-
nificantly more participants (11% of 16%, or 69%), Fisher’s exact
p = .032 (two-tailed). Of the eleven participants who produced sig-
nificant responses for the complex imagery versus rest compari-
sons, three participants produced significant responses for all
three of the complex actions; five participants produced significant
responses for two of the three complex actions; and three partici-
pants produced a significant response for only one of the complex
actions. In the simple imagery comparisons, two of the four partic-
ipants produced significant responses for all three of the simple
actions; one participant produced significant responses for two of
the simple actions; and one participant produced a significant
response for only one of the simple actions. Furthermore, there
were some participants in the sample who did not produce any
enhance single-trial detectability of imagined movements with electroen-
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Table 2
Summary of single-trial classification analyses for Studies 1–3 for each of the imagery comparisons and groups (where applicable).

Study 1 (Complexity; n = 16)

Simple imagery

Right hand imagery versus Rest Left hand imagery versus Rest Both hands imagery versus Rest

Acc Time Sig TPs Sig Sub Acc Time Sig TPs Sig Sub Acc Time Sig TPs Sig Sub

M 60.61 3.59 3.63 2 60.15 3.22 1.75 1 61.27 2.85 6.25 4
SE 0.97 0.29 2.50 – 0.70 0.37 0.94 – 0.93 0.33 3.46 –
Complex imagery

Juggle imagery versus Rest Guitar imagery versus Rest Clap imagery versus Rest

Acc Time Sig TPs Sig Sub Acc Time Sig TPs Sig Sub Acc Time Sig TPs Sig Sub

M 62.71 3.79 9.31 8 63.83 3.42 15.06 7 61.67 3.44 6.06 7
SE 1.07 0.24 3.67 – 1.58 0.32 6.19 – 1.23 0.33 2.63 –

Study 2 (Familiarity; n = 48)

Piano imagery versus Rest Hockey imagery versus Rest Hand squeeze imagery versus Rest

Acc Time Sig TPs Sig Sub Acc Time Sig TPs Sig Sub Acc Time Sig TPs Sig Sub

Pianists (n = 16)
M 63.31 3.76 16.31 7 62.74 3.27 9.88 8 60.76 3.45 6.19 7
SE 1.49 0.24 5.99 – 1.38 0.35 4.69 – 1.05 0.33 2.96 –
Hockey players (n = 16)
M 59.23 3.25 3.88 4 60.34 3.31 5.50 4 59.52 3.35 4.69 4
SE 0.98 0.31 1.95 – 1.64 0.24 2.95 – 1.02 0.28 2.80 –
Controls (n = 16)
M 63.12 3.35 12.94 8 63.75 3.18 11.69 9 63.69 3.25 12.06 8
SE 1.49 0.27 5.70 – 1.38 0.26 4.82 – 1.37 0.33 4.53 –

Study 3 (Complexity and Familiarity; n = 16)

Simple (Scale) imagery versus Rest Complex (Arpeggio) imagery versus Rest

Acc Time Sig TPs Sig Sub Acc Time Sig TPs Sig Sub

M 66.34 3.61 23.19 9 69.60 3.51 33.69 13
SE 1.96 0.19 7.18 – 2.03 0.28 7.10 –

Note: Acc = maximum cross-validated classification accuracy (%); Time = time of Acc (seconds following onset of auditory cue); Sig TPs = number of time points for which
significant classification results were obtained; Sig Sub = number of participants for which significant classifications were obtained.

Fig. 1. Mean smoothed, cross-validated classification accuracy from the EEG single-trial analyses across time for one subject (an experienced guitar player) from Study 1 by
imagery versus rest comparison. Time is measured relative to the offset of the auditory instruction cue. Shaded regions depict ±1 standard error of the mean (smoothed), and
stars denote time-points with statistically significant classification results for the corresponding accuracy time course.
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significant brain responses for any of the imagined actions (four of
the sixteen participants, or 25% of the sample). Only one partici-
pant in the sample produced significant brain responses for every
imagined action in the simple and complex task phases. The inter-
and intra-subject variability in classification accuracy is summa-
rized in Table 2 and detailed in the supplementary data tables
(Supplementary Table S1).

From the group spectral analyses of the EEG data (Fig. 2), there
were statistically significant ERDs over the left hemisphere in the
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low-beta band in the complex imagery versus rest comparison
(ps < .014). In the simple imagery versus rest comparison, there
was an ERD over the right hemisphere in the mid-beta band that
approached statistical significance (p = .050). Additionally, there
were no significant clusters in the simple imagery versus complex
imagery comparisons (ps > .10).

Even though the role of action familiarity was not explicitly
examined in Study 1, there was one interesting finding in this
experiment that emphasized the importance of this factor and its
enhance single-trial detectability of imagined movements with electroen-
13.11.034
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Fig. 2. Averaged, group (n = 16) time–frequency plots from the spectral analyses of the EEG data for Study 1 (Complexity) averaged across the three imagined actions in each
imagery condition. The range of power values (log ratio difference) that are plotted is ±0.6121. Significant clusters (ps < .014) are outlined with solid lines; dashed lines
highlight a cluster with p = .050. Plots on the left and right reflect the left- and right-hemisphere EEG channels (C30 and C40 , respectively), as indicated. Frequency (Hz) is
indicated on the vertical axis, and time is measured relative to the offset of the instruction.

Fig. 3. Averaged, group time–frequency plots from the spectral analyses of the EEG data for Study 2 (Familiarity) by imagery versus rest comparison per familiarity group
(n = 16 per group). The range of power values (log ratio difference) that are plotted is ±0.6121. Significant clusters (ps < .021) are outlined with solid lines; dashed lines
highlight a cluster with p = .036 (C30 for the simple imagery minus rest comparison for the hockey players). Plots on the left and right in each pair reflect the left- and right-
hemisphere EEG channels (C30 and C40 , respectively), as indicated. Frequency (Hz) is indicated on the vertical axis, and time is measured relative to the offset of the
instruction.
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potential influence on single-subject performance. In Fig. 1, we de-
pict the time-course of the single-trial classification accuracies for
one of two experienced guitarists who participated in Study 1. In
line with the group trends already reported, these participants
Please cite this article in press as: Gibson RM et al. Complexity and familiarity
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did not produce significantly classifiable SMRs for any of the sim-
ple imagined actions; the averaged, maximum classification accu-
racy obtained for these participants on the simple imagined actions
was 57.58% (SE = 1.01%), and the classification results for the sim-
enhance single-trial detectability of imagined movements with electroen-
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Fig. 4. Averaged, group (n = 16) time–frequency plots from the spectral analyses of the EEG data from Study 3 (Complexity and Familiarity) by comparison. The range of
power values (log ratio difference) that are plotted is ±0.6121. Significant clusters (p < .017) are outlined with solid lines; dashed lines highlight clusters with p = .044 (C30)
and p = .038 (C40). Plots on the left and right reflect the left- and right-hemisphere EEG channels (C30 and C40 , respectively), as indicated. Frequency (Hz) is indicated on the
vertical axis, and time is measured relative to the offset of the instruction.
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ple imagery versus rest comparisons were not statistically signifi-
cant at any time-point for either participant. Both participants pro-
duced SMRs for the instruction to imagine clapping (one of the
actions in the complex imagery condition) that were significantly
classifiable from rest for a short time; significant classification re-
sults occurred for 6–7 time-points, and the smoothed maximum
classification accuracy for each participant was 64.79%
(SE = 3.52%) and 64.47% (SE = 4.04%; shown in Fig. 1). Most inter-
estingly, however, both participants produced a markedly robust
SMR for the instruction to imagine playing the guitar that was sig-
nificantly classifiable from rest for most of the epoch (68–69 time-
points) with very high accuracy (maximum accuracies of 81.10%,
SE = 3.44%, as shown in Fig. 1 and 7128%, SE = 3.97%, no figure
provided).
3.2. Study 2 (Familiarity)

In terms of the single-trial analyses of the EEG data, there were no
significant differences in accuracy for any of the imagined action
versus rest comparisons, or for any group on any of the imagined ac-
tion versus rest comparisons, ps > .44 (refer to Supplementary
Table S2 for an overview of classification accuracy by participant).
The main effect of group on accuracy approached significance
(p = .054), and this was driven by the relatively low overall classifi-
cation accuracy of the hockey players (M = 59.70%, SE = 1.03%)
compared to the control group (M = 63.52%, SE = 1.24%; pairwise
p = .054). There were no significant differences in terms of the time
at which maximum classification accuracy occurred for any
imagined action or any group by imagined action type, ps > .64,
and there was also no significant difference in the number of trials
included in any of the imagined action types or rest conditions on
average or by group, ps > .41. The three groups also did not differ
in their self-reported vividness ratings of the imagined actions,
p = .34, and in motor imagery ability as measured by the MIQ-RS
(ps > .545; Gregg et al., 2010; see Table 1).
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From the group spectral analyses of the EEG data (Fig. 3), there
were significant ERDs for the familiar imagery versus rest compar-
isons for both the experienced pianists (ps < 0.015) and the experi-
enced hockey players (ps < 0.019). Although the ERDs were
significant bilaterally (rather than unilaterally) and over a longer
period of time for the pianists, the significant ERDs were similar
between the hockey players and pianists for the familiar imagery,
in that both ERDs featured significant clusters in both the low-mu
(8–10 Hz) and low-beta bands. However, the pianists also had sig-
nificant ERDs for the hockey imagery (ps < .017) and simple imag-
ery (ps < 0.017) versus rest comparisons, and the hockey players
had an ERD that approached statistical significance (p = .036) in
the simple imagery versus rest comparison. Furthermore, the con-
trol group (which consisted of age-matched individuals without
significant experience playing hockey or piano) also produced sig-
nificant ERDs for both the piano (p = .021) and hockey imagery
(p = .002) versus rest comparisons, though these ERD clusters were
smaller in their spatiotemporal extent than those generated by pia-
nists. There were no significant clusters in any of the other compar-
isons (ps > 0.08). Thus, much like the single-trial analyses, the
spectral analyses do not provide strong evidence that there was
an advantage in terms of SMR detection for any group regardless
of their familiarity (or lack thereof) with the imagined actions.
3.3. Study 3 (Complexity and Familiarity)

In terms of classification accuracy, there was a significant
advantage for the complex imagined action (Complex:
M = 69.60%, SE = 2.03%) compared to the simple imagined action
for the pianists-only study (Simple: M = 66.34%, SE = 1.96%;
t(15) = �2.589, p = .021, d = 0.65). Supplementary Table S3 pro-
vides an overview of classification accuracy by participant. Fur-
thermore, there was an advantage for the complex imagined
action compared to the simple imagined action in that significantly
more time-points were classified significantly from rest in the
enhance single-trial detectability of imagined movements with electroen-
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former comparison, Z = �2.510, p = .009 (two-tailed), r = .63 (Sim-
ple: median of 9.0 significant time-points [range:0–76]; Complex:
median of 32.0 significant time-points [range:0–74]). There was no
significant difference between the number of participants with sig-
nificant imagery versus rest comparisons in the two complexity
levels, Fisher’s exact p = 0.25. It is important to note that there
was no significant difference in terms of when the maximum clas-
sification accuracy occurred relative to the onset of the auditory
cue for the two imagined actions, p = .72, and it is also worth not-
ing that the differences between the complexity conditions were
not driven by a difference in the number of trials in any condition,
p = .16, or by a difference between the self-reported vividness of
the imagined actions in Study 3 compared to Study 2, p = .10.

The results of the group spectral analyses are shown in Fig. 4 for
each comparison. Compared with rest, significant ERDs (ps < .017)
occurred in the low-mu and low-beta bands over the left hemi-
sphere and in the low-, mid-, and high-beta bands over the right
hemisphere beginning approximately one second after the offset
of the instruction to imagine playing the simple piece. For the com-
plex imagery versus rest comparison, a similar response was ob-
served with the same time-course, although the ERDs were
significant (ps < .011) over both hemispheres throughout the
low-mu band, and throughout the low- and mid-beta bands. In a
comparison of the two imagery conditions, there was more of a
desynchronization bilaterally for the complex imagery in the
low-mu and low-beta bands that approached statistical signifi-
cance (ps = .044 [C30] and .038 [C40]).
4. Discussion

In this paper, we presented a series of three experiments in
which movement complexity and familiarity with movements
were manipulated in a SMR-based imagery paradigm. The purpose
of this work was to increase the likelihood of detecting reliable and
robust SMRs, and thereby improve how well covert command-fol-
lowing can be detected in behaviourally non-responsive patients.
In future work, we will apply these manipulations to SMR para-
digms used with BCIs intended for communication with severely
brain-injured patients, including individuals diagnosed as VS.

In Study 1, imagery of a range of bimanual sequences of actions
(‘‘complex imagery’’) resulted in SMRs that were classified from
rest with similar accuracy as imagery of the simple hand squeezes
typically used with SMR-based BCIs. There was a group trend that
the complex actions used in this task were classified with higher
accuracy than the simple hand squeezes typically used with
SMR-based BCIs, although this result did not reach statistical sig-
nificance (p = .068). Furthermore, we found a significant advantage
for the complex actions in that the SMRs for these actions were
classified significantly from rest for a longer period of time than
the simple actions. We also found that significantly more single
subjects produced significantly classifiable SMRs for at least one
of the complex actions than for at least one of the simple actions.
Overall, the findings of Study 1 align with our prediction based
on previous work that there would be an enhancement of the brain
response for the complex imagery (e.g., Kuhtz-Buschbeck et al.,
2003; Roosink and Zijdewind, 2010; Holper and Wolf, 2011), and
support our hypothesis that motor imagery that involves more
than one body part and sequences of actions is likely to improve
the ability to detect covert command-following or communication
in future work.

Another interesting finding from Study 1 was the between- and
within-subject variability for the various imagined actions. Nearly
half of the sample (seven or eight of the sixteen participants; see
Table 2) produced a SMR that was significantly classifiable from
rest for each of the complex imagined actions, while only one to
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four participants produced a SMR that was significantly classifiable
from rest for each of the simple imagined actions. We posit that, at
the group-level, the advantage of the complex imagery was not
statistically significant for classification accuracy because of this
variability. In other words, there was no advantage for the complex
imagery at the group-level because most participants (eight of the
eleven participants with significant complex imagery versus rest
comparisons) only produced significant responses for one or two
of the complex imagined actions, rather than for all three of these
actions. The latter observation is well-illustrated anecdotally by
the classification results of two guitarists who participated in
Study 1 (see Section 3.1 and Fig. 1). There was a marked improve-
ment in classification accuracy when the guitarists imagined play-
ing the guitar as part of the complex imagery phase of the
experimental procedure, but neither guitarist produced a signifi-
cantly classifiable brain response for any of the simple imagined
actions.

We designed Studies 2 and 3 to follow up on the group trend of
the advantage for the complex actions in Study 1 and to explore
the role of action familiarity in the imagery paradigm. Study 2,
which included groups of experienced pianists, experienced ice
hockey players, and age-matched controls, did not meet our expec-
tations in that there was no advantage for any of the imagined
actions for any group, regardless of their familiarity with the imag-
ined actions (e.g., pianists imagining playing piano, etc.). Compared
to novices, experienced athletes and musicians utilize fewer re-
gions of the brain when imagining actions involving the sport or
instrument with which both groups have familiarity (e.g., Lotze
et al., 2003; Fourkas et al., 2008; Olsson et al., 2008; Wei and
Luo, 2010). Although expert brain responses to familiar imagery
are fairly consistent within and across individuals (e.g., Langheim
et al., 2002), these responses did not result in an enhancement of
the SMR in Study 2.

Interestingly, in Study 3, we found an advantage in SMR classi-
fication for specific, familiar actions (performance of two musical
pieces), such that classification accuracy was higher and significant
over a longer period of time when the experienced pianists from
Study 2 imagined playing the more complex musical piece. More-
over, the ERDs from the spectral analyses of Study 3 were statisti-
cally significant for the longest period of time and associated with
the largest log-ratio differences in power of all the imagery condi-
tions with significant ERDs across all three experiments (see
Figs. 2–4). As an exploratory post hoc test, we also compared the
classification accuracy for the pianists on the instruction to imag-
ine playing a musical piece of their choice on the piano (versus
rest) in Study 2 with the classification accuracy for imagined per-
formance of each of the two specific musical pieces (versus rest)
in Study 3. This analysis resulted in a significant effect of move-
ment type, F(15) = 16.016, p = .001, gp

2 = .361, that was driven by
the significantly lower classification accuracy for the piano imag-
ery in Study 2 compared to the complex piano imagery in Study
3 (p = .003; Complex Musical Piece [Study 3]: M = 69.60%,
SE = 2.03%; Musical Piece of Choice [Study 2]: M = 63.31%,
SE = 1.49%; other pairwise ps > .06). This finding provides addi-
tional support for our claim that it is the imagery of a specific, com-
plex, and familiar action that leads to an advantage in SMR
classification, rather any of these three properties individually.

A combination of factors likely contributed to the finding that
the specific, complex, familiar imagery from Study 3 resulted in
the most robust brain responses in this work. The finding that
the complex imagery resulted in an enhancement of the SMR com-
pared to the simple imagery within Study 3 aligns well with previ-
ous work (e.g., Kuhtz-Buschbeck et al., 2003; Roosink and
Zijdewind, 2010; Holper and Wolf, 2011). Moreover, there was
more potential variability in the brain responses between partici-
pants in the piano imagery for Study 2 versus Study 3 due to
enhance single-trial detectability of imagined movements with electroen-
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variations in the particular pieces that each person chose to imag-
ine in Study 2; this variability likely resulted in less consistent and
less robust brain responses between individuals, regardless of their
familiarity with the piano. On a related note, it is highly unlikely
that the specificity of the instructions alone underlies the advan-
tage of the Study 3 imagery, given that all of the other imagery
tasks in this work also involved specific instructions (e.g., imagine
squeezing your right hand, etc.). Playing the piano involves highly
temporally and spatially complex movements (see Zatorre et al.,
2007, for a review), and analogous finger-sequencing actions that
do not require prior knowledge of the piano are also associated
with more robust brain responses than less temporally and spa-
tially complex actions (e.g., Bengtsson et al., 2004). It is thus possi-
ble that the piano performance imagery was simply more
conducive to an enhanced SMR than the other imagined actions
in this work, but that this advantage was only evident when the ac-
tions were well-specified and performed by individuals who were
highly familiar with the actions. Although the particular imagined
actions from Study 3 are not appropriate for non-musicians, these
findings nevertheless provide some criteria that can be generalized
to other imagery tasks for future work with SMR-based BCIs.

In summary, the three experiments in this work provide three
important findings regarding the roles of action familiarity and
complexity in the EEG correlates of motor imagery. Firstly, allow-
ing an individual to imagine performing a task that involves
bimanual sequences of actions can result in more robust brain re-
sponses from some individuals, as illustrated in Fig. 1, and these
modified imagery tasks do not impair performance compared to
the hand-squeeze imagery typically used with SMR-based BCIs.
Secondly, a familiar action may not always lead to a more robust
SMR during motor imagery than other actions (Study 2), but,
thirdly and lastly, an action that is both familiar and involves suf-
ficiently complex and well-specified actions can lead to an en-
hanced and more sustained SMR during motor imagery (Study 3).
Furthermore, we speculate that the role of action familiarity in
modulation of the SMR is that individuals must have some experi-
ence executing an action in order to perform motor imagery of that
action reliably (see Olsson and Nyberg, 2010), but other factors,
such as the complexity of the particular imagined action, deter-
mine how robust the brain response will be for that action. In fact,
in studies of short-term motor learning, brain responses to motor
imagery are enhanced following overt practice of novel actions
(e.g., Lacourse et al., 2005; Baeck et al., 2012). For this reason,
although this work only examined familiar imagery among highly
experienced athletes and musicians, we propose that it is worth-
while to select an imagery task based on a person’s skills and inter-
ests to attempt to ensure a reliable brain response during motor
imagery, regardless of the person’s level of expertise in executing
the action. Most importantly, we posit that the subtle but impor-
tant changes in task instructions proposed here may provide ben-
efits to those individuals who are unable to control a conventional
SMR-based BCI (e.g., Fig. 1), given the substantial variability be-
tween and within subjects in previous work (e.g., Hammer et al.,
2012).

We therefore conclude that these results provide a framework
for modifications of SMR-based BCI paradigms that may be used
to detect covert command-following in, and even communicate
with, behaviourally non-responsive patients. Based on the findings
from the healthy individuals used in this work, we propose that the
imagery tasks used with patients diagnosed as VS in SMR-based
BCI paradigms should be customized to each patient whenever
possible. Indeed, during conventional behavioural assessment with
the CRS-R, the type of command that a patient is asked to follow
should be based on the patient’s physical capacity in order to max-
imize the likelihood of detecting a response (Kalmar and Giacino,
2005). Based on the findings of Study 3 and the interesting results
Please cite this article in press as: Gibson RM et al. Complexity and familiarity
cephalography. Clin Neurophysiol (2013), http://dx.doi.org/10.1016/j.clinph.20
depicted in Fig. 1, it may be useful to confer with care-givers in or-
der to select an imagery task that involves more than one sensory
modality (e.g., auditory imagery) and a specific sequence of actions
with which the patient has had some experience. Furthermore, the
supplementary motor area (SMA) and other premotor cortical
areas are active in both musicians and non-musicians when listen-
ing to complex rhythms (e.g., Bengtsson et al., 2009) and imagining
familiar melodies (e.g., Halpern and Zatorre, 1999; for a review, see
Zatorre et al., 2007). Thus, imagery that involves music and rhythm
may also generalize well to non-musicians and behaviourally non-
responsive patients (see also Schaefer et al., 2011). In general, cus-
tomizing the BCI imagery task to suit each patient when possible
and utilizing other sensory modalities during imagery of sequences
of actions may maximize the likelihood of the patient producing a
robust, reliable SMR (e.g., imagining noises that a tool makes while
imagining using that tool; see also Felton et al., 2007, and Wilson
et al., 2006). By extension, this enhanced SMR may increase the
chances of correctly identifying patients who are able to follow
the imagery commands, and may even allow for some patients to
exploit the imagery response for communication. With the appro-
priate reliability checks, successful use of a SMR-based BCI could
become part of a neuroimaging-based assessment of awareness
in VS patients, and thereby improve the currently low rate of diag-
nostic accuracy for this group (Childs et al., 1993; Andrews et al.,
1996; Schnakers et al., 2009).
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